资讯中心

[2019免费国产手机在线视频]齿轮与室内设计

大家好今天来介绍的问题,2019免费国产手机在线视频,以下是小编对此问题的归纳整理,来看看吧。

一级齿轮传动减速器设计

文章目录列表:

一级齿轮传动减速器设计

给你做个参考
一、前言
(一)
设计目的:
通过本课程设计将学过的基础理论知识进行综合应用,培养结构设计,计算能力,熟悉一般的机械装置设计过程。
(二)
传动方案的分析
机器一般是由原动机、传动装置和工作装置组成。传动装置是用来传递原动机的运动和动力、变换其运动形式以满足工作装置的需要,是机器的重要组成部分。传动装置是否合理将直接影响机器的工作性能、重量和成本。合理的传动方案除满足工作装置的功能外,还要求结构简单、制造方便、成本低廉、传动效率高和使用维护方便。
本设计中原动机为电动机,工作机为皮带输送机。传动方案采用了两级传动,第一级传动为带传动,第二级传动为单级直齿圆柱齿轮减速器。
带传动承载能力较低,在传递相同转矩时,结构尺寸较其他形式大,但有过载保护的优点,还可缓和冲击和振动,故布置在传动的高速级,以降低传递的转矩,减小带传动的结构尺寸。
齿轮传动的传动效率高,适用的功率和速度范围广,使用寿命较长,是现代机器中应用最为广泛的机构之一。本设计采用的是单级直齿轮传动。
减速器的箱体采用水平剖分式结构,用HT200灰铸铁铸造而成。
二、传动系统的参数设计
原始数据:运输带的工作拉力F=0.2 KN;带速V=2.0m/s;滚筒直径D=400mm(滚筒效率为0.96)。
工作条件:预定使用寿命8年,工作为二班工作制,载荷轻。
工作环境:室内灰尘较大,环境最高温度35°。
动力来源:电力,三相交流380/220伏。
1
、电动机选择
(1)、电动机类型的选择: Y系列三相异步电动机
(2)、电动机功率选择:
①传动装置的总效率:
=0.98×0.99 ×0.96×0.99×0.96
②工作机所需的输入功率:
因为 F=0.2 KN=0.2 KN= 1908N
=FV/1000η
=1908×2/1000×0.96
=3.975KW
③电动机的输出功率:
=3.975/0.87=4.488KW
使电动机的额定功率P =(1~1.3)P ,由查表得电动机的额定功率P = 5.5KW 。
⑶、确定电动机转速:
计算滚筒工作转速:
=(60×v)/(2π×D/2)
=(60×2)/(2π×0.2)
=96r/min
由推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比范围I’ =3~6。取V带传动比I’ =2~4,则总传动比理时范围为I’ =6~24。故电动机转速的可选范围为n’ =(6~24)×96=576~2304r/min
⑷、确定电动机型号
根据以上计算在这个范围内电动机的同步转速有1000r/min和1500r/min,综合考虑电动机和传动装置的情况,同时也要降低电动机的重量和成本,最终可确定同步转速为1500r/min ,根据所需的额定功率及同步转速确定电动机的型号为Y132S-4 ,满载转速 1440r/min 。
其主要性能:额定功率:5.5KW,满载转速1440r/min,额定转矩2.2,质量68kg。
2 、计算总传动比及分配各级的传动比
(1)、总传动比:i =1440/96=15
(2)、分配各级传动比:
根据指导书,取齿轮i =5(单级减速器i=3~6合理)
=15/5=3
3 、运动参数及动力参数计算
⑴、计算各轴转速(r/min)
=960r/min
=1440/3=480(r/min)
=480/5=96(r/min)
⑵计算各轴的功率(KW)
电动机的额定功率Pm=5.5KW
所以
P =5.5×0.98×0.99=4.354KW
=4.354×0.99×0.96 =4.138KW
=4.138×0.99×0.99=4.056KW
⑶计算各轴扭矩(N•mm)
TI=9550×PI/nI=9550×4.354/480=86.63N•m
=9550×4.138/96 =411.645N•m
=9550×4.056/96 =403.486N•m
三、传动零件的设计计算
(一)齿轮传动的设计计算
(1)选择齿轮材料及精度等级
考虑减速器传递功率不大,所以齿轮采用软齿面。小齿轮选用40Cr调质,齿面硬度为240~260HBS。大齿轮选用45#钢,调质,齿面硬度220HBS;根据指导书选7级精度。齿面精糙度R ≤1.6~3.2μm
(2)确定有关参数和系数如下:
传动比i
取小齿轮齿数Z =20。则大齿轮齿数:
=5×20=100 ,所以取Z
实际传动比
i =101/20=5.05
传动比误差:(i -i)/I=(5.05-5)/5=1%齿数比: u=i
取模数:m=3 ;齿顶高系数h =1;径向间隙系数c =0.25;压力角 =20°;
则 h *m=3,h )m=3.75
h=(2 h )m=6.75,c= c
分度圆直径:d =×20mm=60mm
d =3×101mm=303mm
由指导书取 φ
齿宽: b=φ =0.9×60mm=54mm
=60mm ,
b
齿顶圆直径:d )=66,
d
齿根圆直径:d )=52.5,
d )=295.5
基圆直径:
d cos =56.38,
d cos =284.73
(3)计算齿轮传动的中心矩a:
a=m/2(Z )=3/2(20+101)=181.5mm 液压绞车≈182mm
(二)轴的设计计算
1 、输入轴的设计计算
⑴、按扭矩初算轴径
选用45#调质,硬度217~255HBS
根据指导书并查表,取c=110
所以 d≥110 (4.354/480) 1/3mm=22.941mm
d=22.941×(1+5%)mm=24.08mm
∴选d=25mm
⑵、轴的结构设计
①轴上零件的定位,固定和装配
单级减速器中可将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面由轴肩定位,右面用套筒轴向固定,联接以平键作过渡配合固定,两轴承分别以轴肩和大筒定位,则采用过渡配合固定
②确定轴各段直径和长度
Ⅰ段:d =25mm
, L =(1.5~3)d ,所以长度取L
∵h=2c
c=1.5mm
+2h=25+2×2×1.5=31mm
考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:
L =(2+20+55)=77mm
III段直径:
初选用30207型角接触球轴承,其内径d为35mm,外径D为72mm,宽度T为18.25mm.
=d=35mm,L =T=18.25mm,取L
Ⅳ段直径:
由手册得:c=1.5
h=2c=2×1.5=3mm
此段左面的滚动轴承的定位轴肩考虑,应便于轴承的拆卸,应按标准查取由手册得安装尺寸h=3.该段直径应取:d =(35+3×2)=41mm
因此将Ⅳ段设计成阶梯形,左段直径为41mm
+2h=35+2×3=41mm
长度与右面的套筒相同,即L
Ⅴ段直径:d =50mm. ,长度L =60mm
取L
由上述轴各段长度可算得轴支承跨距L=80mm
Ⅵ段直径:d =41mm, L
Ⅶ段直径:d =35mm, L <L3,取L
2 、输出轴的设计计算
⑴、按扭矩初算轴径
选用45#调质钢,硬度(217~255HBS)
根据课本P235页式(10-2),表(10-2)取c=110
=110× (2.168/76.4) =38.57mm
考虑有键槽,将直径增大5%,则
d=38.57×(1+5%)mm=40.4985mm
∴取d=42mm
⑵、轴的结构设计
①轴的零件定位,固定和装配
单级减速器中,可以将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面用轴肩定位,右面用套筒轴向定位,周向定位采用键和过渡配合,两轴承分别以轴承肩和套筒定位,周向定位则用过渡配合或过盈配合,轴呈阶状,左轴承从左面装入,齿轮套筒,右轴承和皮带轮依次从右面装入。
②确定轴的各段直径和长度
初选30211型角接球轴承,其内径d为55mm,外径D=100mm,宽度T为22.755mm。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长42.755mm,安装齿轮段长度为轮毂宽度为2mm。
则 d =42mm L = 50mm
L = 55mm
L = 60mm
L = 68mm
L =55mm
L
四、滚动轴承的选择
1 、计算输入轴承
选用30207型角接触球轴承,其内径d为35mm,外径D为72mm,宽度T为18.25mm.
2 、计算输出轴承
选30211型角接球轴承,其内径d为55mm,外径D=100mm,宽度T为22.755mm
五、键联接的选择
1 、输出轴与带轮联接采用平键联接
键的类型及其尺寸选择:
带轮传动要求带轮与轴的对中性好,故选择C型平键联接。
根据轴径d =42mm ,L =65mm
查手册得,选用C型平键,得: 卷扬机
装配图中22号零件选用GB1096-79系列的键12×56
则查得:键宽b=12,键高h=8,因轴长L =65,故取键长L=56
2 、输出轴与齿轮联接用平键联接
=60mm,L
查手册得,选用C型平键,得:
装配图中 赫格隆36号零件选用GB1096-79系列的键18×45
则查得:键宽b=18,键高h=11,因轴长L =53,故取键长L=45
3 、输入轴与带轮联接采用平键联接 =25mm L
查手册
选A型平键,得:
装配图中29号零件选用GB1096-79系列的键8×50
则查得:键宽b=8,键高h=7,因轴长L =62,故取键长L=50
4 、输出轴与齿轮联接用平键联接
=50mm
L
查手册
选A型平键,得:
装配图中26号零件选用GB1096-79系列的键14×49
则查得:键宽b=14,键高h=9,因轴长L =60,故取键长L=49
六、箱体、箱盖主要尺寸计算
箱体采用水平剖分式结构,采用HT200灰铸铁铸造而成。箱体主要尺寸计算如下:
七、轴承端盖
主要尺寸计算
轴承端盖:HT150 d3=8
n=6 b=10
八、减速器的
减速器的附件的设计
1
、挡圈 :GB886-86
查得:内径d=55,外径D=65,挡圈厚H=5,右肩轴直径D1≥58
2
、油标 :M12:d =6,h=28,a=10,b=6,c=4,D=20,D
3
、角螺塞
M18
×
1.5 :JB/ZQ4450-86
九、
设计目录
1、吴宗泽、罗圣国主编.机械设计课程设计手册.北京:高等教育出版社,1999.6
2、解兰昌等编著.紧密仪器仪表机构设计.杭州:浙江大学出版社,1997.11

求助二级齿轮减速器的设计

机械设计课程--带式运输机传动装置中的同轴式2级圆柱齿轮减速器
目 录
设计任务书……………………………………………………1
传动方案的拟定及说明………………………………………4
电动机的选择…………………………………………………4
计算传动装置的运动和动力参数……………………………5
传动件的设计计算……………………………………………5
轴的设计计算…………………………………………………8
滚动轴承的选择及计算………………………………………14
键联接的选择及校核计算……………………………………16
连轴器的选择…………………………………………………16
减速器附件的选择……………………………………………17
润滑与密封……………………………………………………18
设计小结………………………………………………………18
目录…………………………………………………18
机械设计课程设计任务书
题目:设计一用于带式运输机传动装置中的同轴式二级圆柱齿轮减速器
一. 总体布置简图
1—电动机;2—联轴器;3—齿轮减速器;4—带式运输机;5—鼓轮;6—联轴器
二. 工作情况: 载荷平稳、单向旋转
三. 原始数据
鼓轮的扭矩T(N•m):850 鼓轮的直径D(mm):350
运输带速度V(m/s):0.7 带速允许偏差(%):5
使用年限(年):5 工作制度(班/日):2
四. 设计内容
1. 电动机的选择与运动参数计算; 2. 斜齿轮传动设计计算 3. 轴的设计 4. 滚动轴承的选择 5. 键和连轴器的选择与校核; 6. 装配图、零件图的绘制
7. 设计计算说明书的编写
五. 设计任务
1. 减速器总装配图一张 2. 齿轮、轴零件图各一张3. 设计说明书一份
六. 设计进度
1、 第一阶段:总体计算和传动件参数计算 2、 第二阶段:轴与轴系零件的设计
3、 第三阶段:轴、轴承、联轴器、键的校核及草图绘制
4、 第四阶段:装配图、零件图的绘制及计算说明书的编写
传动方案的拟定及说明
由题目所知传动机构类型为:同轴式二级圆柱齿轮减速器。故只要对本传动机构进行分析论证。
本传动机构的特点是:减速器横向尺寸较小,两大吃论浸油深度可以大致相同。结构较复杂,轴向尺寸大,中间轴较长、刚度差,中间轴承润滑较困难。
电动机的选择
1.电动机类型和结构的选择
因为本传动的工作状况是:载荷平稳、单向旋转。所以选用常用的封闭式Y(IP44)系列的电动机。
2.电动机容量的选择
1) 工作机所需功率Pw Pw=3.4kW
2) 电动机的输出功率 Pd=Pw/η η= =0.904 Pd=3.76kW
3.电动机转速的选择 nd=(i1’•i2’…in’)nw 初选为同步转速为1000r/min的电动机
4.电动机型号的确定
由表20-1查出电动机型号为Y132M1-6,其额定功率为4kW,满载转速960r/min。基本符合题目所需的要求
计算传动装置的运动和动力参数
传动装置的总传动比及其分配
1.计算总传动比
由电动机的满载转速nm和工作机主动轴转速nw可确定传动装置应有的总传动比为:
i=nm/nw nw=38.4 i=25.14
2.合理分配各级传动比
由于减速箱是同轴式布置,所以i1=i2。
因为i=25.14,取i=25,i1=i2=5
速度偏差为0.5%项 目 电动机轴 高速轴I 中间轴II 低速轴III 鼓 轮
转速(r/min) 960 960 192 38.4 38.4 功率(kW) 4 3.96 3.84 3.72 3.57
转矩(N•m) 39.8 39.4 191 925.2 888.4 传动比 1 1 5 5 1 效率 1 0.99 0.97 0.97 0.97
传动件设计计算
1. 选精度等级、材料及齿数
1) 材料及热处理;
选择小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。
2) 精度等级选用7级精度;
3) 试选小齿轮齿数z1=20,大齿轮齿数z2=100的;
4) 选取螺旋角。初选螺旋角β=14°
2.按齿面接触强度设计
因为低速级的载荷大于高速级的载荷,所以通过低速级的数据进行计算
按式(10—21)试算,即 dt≥
1) 确定公式内的各计算数值
(1) 试选Kt=1.6 (2) 由图10-30选取区域系数ZH=2.433
(3) 由表10-7选取尺宽系数φd=1
(4) 由图10-26查得εα1=0.75,εα2=0.87,则εα=εα1+εα2=1.62
(5) 由表10-6查得材料的弹性影响系数ZE=189.8Mpa
(6) 由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=600MPa;大齿轮的解除疲劳强度极限σHlim2=550MPa;
(7) 由式10-13计算应力循环次数
N1=60n1jLh=60×192×1×(2×8×300×5)=3.32×10e8 N2=N1/5=6.64×107
(8) 由图10-19查得接触疲劳寿命系数KHN1=0.95; KHN2=0.98
(9) 计算接触疲劳许用应力
取失效概率为1%,安全系数S=1,由式(10-12)得
[σH]1==0.95×600MPa=570MPa [σH]2==0.98×550MPa=539MPa
[σH]=[σH]1+[σH]2/2=554.5MPa
2) 计算
(1) 试算小齿轮分度圆直径d1t d1t≥ = =67.85
(2) 计算圆周速度 v= = =0.68m/s
(3) 计算齿宽b及模数mnt
b=φdd1t=1×67.85mm=67.85mm mnt= = =3.39
h=2.25mnt=2.25×3.39mm=7.63mm b/h=67.85/7.63=8.89
(4) 计算纵向重合度εβ εβ= =0.318×1×tan14 =1.59
(5) 计算载荷系数K
已知载荷平稳,所以取KA=1
根据v=0.68m/s,7级精度,由图10—8查得动载系数KV=1.11;由表10—4查的KHβ的计算公式和直齿轮的相同,
故 KHβ=1.12+0.18(1+0.6×1 )1×1 +0.23×10 67.85=1.42
由表10—13查得KFβ=1.36
由表10—3查得KHα=KHα=1.4。故载荷系数
K=KAKVKHαKHβ=1×1.03×1.4×1.42=2.05
(6) 按实际的载荷系数校正所得的分度圆直径,由式(10—10a)得
d1= = mm=73.6mm
(7) 计算模数mn mn = mm=3.74
3.按齿根弯曲强度设计 由式(10—17 mn≥
1) 确定计算参数
(1) 计算载荷系数
K=KAKVKFαKFβ=1×1.03×1.4×1.36=1.96 (2) 根据纵向重合度εβ=0.318φdz1tanβ=1.59,从图10-28查得螺旋角影响系数 Yβ=0。88
(3) 计算当量齿数
z1=z1/cos β=20/cos 14 =21.89 z2=z2/cos β=100/cos 14 =109.47
(4) 查取齿型系数
由表10-5查得YFa1=2.724;Yfa2=2.172
(5) 查取应力校正系数 由表10-5查得Ysa1=1.569;Ysa2=1.798
(6) 计算[σF]
σF1=500Mpa σF2=380MPa KFN1=0.95 KFN2=0.98
[σF1]=339.29Mpa [σF2]=266MPa
(7) 计算大、小齿轮的 并加以比较 = =0.0126 = =0.01468
大齿轮的数值大。
2) 设计计算 mn≥ =2.4 mn=2.5
4.几何尺寸计算
1) 计算中心距
z1 =32.9,取z1=33 z2=16 a =255.07mm a圆整后取255mm
2) 按圆整后的中心距修正螺旋角
β=arcos =13 55’50”
3) 计算大、小齿轮的分度圆直径
d1 =85.00mm d2 =425mm
4) 计算齿轮宽度
b=φdd1 b=85mm B1=90mm,B2=85mm
5) 结构设计
以大齿轮为例。因齿轮齿顶圆直径大于160mm,而又小于500mm,故以选用腹板式为宜。其他有关尺寸参看大齿轮零件图。
轴的设计计算
拟定输入轴齿轮为右旋
II轴:
1.初步确定轴的最小直径 d≥ = =34.2mm
2.求作用在齿轮上的受力
Ft1= =899N Fr1=Ft =337N Fa1=Fttanβ=223N;
Ft2=4494N Fr2=1685N Fa2=1115N
3.轴的结构设计
1) 拟定轴上零件的装配方案
i. I-II段轴用于安装轴承30307,故取直径为35mm。
ii. II-III段轴肩用于固定轴承,查手册得到直径为44mm。
iii. III-IV段为小齿轮,外径90mm。
iv. IV-V段分隔两齿轮,直径为55mm。
v. V-VI段安装大齿轮,直径为40mm。
vi. VI-VIII段安装套筒和轴承,直径为35mm。
2) 根据轴向定位的要求确定轴的各段直径和长度
1. I-II段轴承宽度为22.75mm,所以长度为22.75mm。
2. II-III段轴肩考虑到齿轮和箱体的间隙12mm,轴承和箱体的间隙4mm,所以长度为16mm。
3. III-IV段为小齿轮,长度就等于小齿轮宽度90mm。
4. IV-V段用于隔开两个齿轮,长度为120mm。
5. V-VI段用于安装大齿轮,长度略小于齿轮的宽度,为83mm。
6. VI-VIII长度为44mm。
4. 求轴上的载荷
66 207.5 63.5 Fr1=1418.5N Fr2=603.5N
查得轴承30307的Y值为1.6 Fd1=443N Fd2=189N
因为两个齿轮旋向都是左旋。 故:Fa1=638N Fa2=189N
5.精确校核轴的疲劳强度
1) 判断危险截面
由于截面IV处受的载荷较大,直径较小,所以判断为危险截面
2) 截面IV右侧的
截面上的转切应力为
由于轴选用40cr,调质处理,所以([2]P355表15-1)
a) 综合系数的计算
由 , 经直线插入,知道因轴肩而形成的理论应力集中为 , ,
([2]P38附表3-2经直线插入)
轴的材料敏感系数为 , , ([2]P37附图3-1) 故有效应力集中系数为
查得尺寸系数为 ,扭转尺寸系数为 , ([2]P37附图3-2)([2]P39附图3-3)
轴采用磨削加工,表面质量系数为 , ([2]P40附图3-4)
轴表面未经强化处理,即 ,则综合系数值为
b) 碳钢系数的确定 碳钢的特性系数取为 ,
c) 安全系数的计算 轴的疲劳安全系数为
故轴的选用安全。
I轴:
1.作用在齿轮上的力
FH1=FH2=337/2=168.5 Fv1=Fv2=889/2=444.5
2.初步确定轴的最小直径 3.轴的结构设计
1) 确定轴上零件的装配方案
2)根据轴向定位的要求确定轴的各段直径和长度
d) 由于联轴器一端连接电动机,另一端连接输入轴,所以该段直径尺寸受到电动机外伸轴直径尺寸的限制,选为25mm。
e) 考虑到联轴器的轴向定位可靠,定位轴肩高度应达2.5mm,所以该段直径选为30。
f) 该段轴要安装轴承,考虑到轴肩要有2mm的圆角,则轴承选用30207型,即该段直径定为35mm。
g) 该段轴要安装齿轮,考虑到轴肩要有2mm的圆角,经标准化,定为40mm。
h) 为了齿轮轴向定位可靠,定位轴肩高度应达5mm,所以该段直径选为46mm。
i) 轴肩固定轴承,直径为42mm。
j) 该段轴要安装轴承,直径定为35mm。
2) 各段长度的确定
各段长度的确定从左到右分述如下:
a) 该段轴安装轴承和挡油盘,轴承宽18.25mm,该段长度定为18.25mm。
b) 该段为轴环,宽度不小于7mm,定为11mm。
c) 该段安装齿轮,要求长度要比轮毂短2mm,齿轮宽为90mm,定为88mm。
d) 该段综合考虑齿轮与箱体内壁的距离取13.5mm、轴承与箱体内壁距离取4mm(采用油润滑),轴承宽18.25mm,定为41.25mm。
e) 该段综合考虑箱体突缘厚度、调整垫片厚度、端盖厚度及联轴器安装尺寸,定为57mm。
f) 该段由联轴器孔长决定为42mm
4.按弯扭合成应力校核轴的强度
W=62748N.mm T=39400N.mm
45钢的强度极限为 ,又由于轴受的载荷为脉动的,所以 。

III轴
1.作用在齿轮上的力
FH1=FH2=4494/2=2247N Fv1=Fv2=1685/2=842.5N
2.初步确定轴的最小直径
3.轴的结构设计
1) 轴上零件的装配方案
2) 据轴向定位的要求确定轴的各段直径和长度
I-II II-IV IV-V V-VI VI-VII VII-VIII
直径 60 70 75 87 79 70 长度 105 113.75 83 9 9.5 33.25
5.求轴上的载荷
Mm=316767N.mm T=925200N.mm
6. 弯扭校合
滚动轴承的选择及计算
I轴:
1.求两轴承受到的径向载荷
5、 轴承30206的校核
1) 径向力 2) 派生力 3) 轴向力 由于 ,所以轴向力为 ,4) 当量载荷
由于 , , 所以 , , , 。
由于为一般载荷,所以载荷系数为 ,故当量载荷为
5) 轴承寿命的校核
II轴:
6、 轴承30307的校核
1) 径向力 2) 派生力 3) 轴向力 由于 , 所以轴向力为 ,
4) 当量载荷 由于 , ,所以 , , , 。
由于为一般载荷,所以载荷系数为 ,故当量载荷为
5) 轴承寿命的校核
III轴:
7、 轴承32214的校核
1) 径向力 2) 派生力 3) 轴向力
由于 ,所以轴向力为 ,
4) 当量载荷 由于 , , 所以 , , , 。
由于为一般载荷,所以载荷系数为 ,故当量载荷为
5) 轴承寿命的校核
键连接的选择及校核计算

代号 直径
(mm) 工作长度 (mm) 工作高度 (mm) 转矩(N•m) 极限应力(MPa)
高速轴 8×7×60(单头) 25 35 3.5 39.8 26.0
12×8×80(单头) 40 68 4 39.8 7.32
中间轴 12×8×70(单头) 40 58 4 191 41.2
低速轴 20×12×80(单头) 75 60 6 925.2 68.5
18×11×110(单头) 60 107 5.5 925.2 52.4
由于键采用静联接,冲击轻微,所以许用挤压应力为 ,所以上述键皆安全。
连轴器的选择 由于弹性联轴器的诸多优点,所以考虑选用它
高速轴用联轴器的设计计算
由于装置用于运输机,原动机为电动机,所以工作情况系数为 ,
计算转矩为
所以考虑选用弹性柱销联轴器TL4(GB4323-84),但由于联轴器一端与电动机相连,其孔径受电动机外伸轴径限制,所以选用TL5(GB4323-84)
其主要参数如下:
材料HT200 公称转矩 轴孔直径 , 轴孔长 , 装配尺寸 半联轴器厚
([1]P163表17-3)(GB4323-84
三、第二个联轴器的设计计算
由于装置用于运输机,原动机为电动机,所以工作情况系数为 ,
计算转矩为
所以选用弹性柱销联轴器TL10(GB4323-84)
其主要参数如下:
材料HT200 公称转矩 轴孔直径 轴孔长 ,装配尺寸 半联轴器厚
([1]P163表17-3)(GB4323-84
减速器附件的选择
通气器
由于在室内使用,选通气器(一次过滤),采用M18×1.5
油面指示器 选用游标尺M16
起吊装置 采用箱盖吊耳、箱座吊耳 放油螺塞 选用外六角油塞及垫片M16×1.5
二、润滑与密封
一、齿轮的润滑
采用浸油润滑,由于低速级周向速度为,所以浸油高度约为六分之一大齿轮半径,取为35mm。
二、滚动轴承的润滑
由于轴承周向速度为,所以宜开设油沟、飞溅润滑。
三、润滑油的选择
齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备,选用L-AN15润滑油。
四、密封方法的选取
选用凸缘式端盖易于调整,采用闷盖安装骨架式旋转轴唇型密封圈实现密封。
密封圈型号按所装配轴的直径确定为(F)B25-42-7-ACM,(F)B70-90-10-ACM。
轴承盖结构尺寸按用其定位的轴承的外径决定。
设计小结
由于时间紧迫,所以这次的设计存在许多缺点,比如说箱体结构庞大,重量也很大。齿轮的计算不够精确等等缺陷,我相信,通过这次的实践,能使我在以后的设计中避免很多不必要的工作,有能力设计出结构更紧凑,传动更稳定精确的设备。

求 齿轮减速器传动设计说明书装配图零件图 做课程设计满意答复追加50分。

单级斜齿圆柱减速器设计说明书

院(系) 机械与汽车工程学院
专 业
班 级
学 号
姓 名

专业教研室、研究所负责人
指导教师
年 月 日
XXXXXXX 大 学
课 程 设 计 ( 论 文 ) 任 务 书

兹发给 车辆工程 班学生 课程设计(论文)任务书,内容如下:
1. 设计题目:V带——单级斜齿圆柱减速器
2. 应完成的项目:
(1) 减速器的总装配图一张(A1)
(2) 齿轮零件图 一张(A3)
(3) 轴零件图一张(A3)
(4) 设计说明书一份
3. 本设计(论文)任务书于2008 年 月 日发出,应于2008 年 月 日前完成,然后进行答辩。
专业教研室、研究所负责人 审核 年 月 日
指导教师 签发 年 月 日

程设计(论文)评语:课程设计(论文)总评成绩:
课程设计(论文)答辩负责人签字:
年 月 日

目 录

一. 传动方案的确定―――――――――――――――5
二. 原始数据――――――――――――――――――5
三. 确定电动机的型号――――――――――――――5
四. 确定传动装置的总传动比及分配――――――――6
五. 传动零件的设计计算―――――――――――――7
六. 减速器铸造箱体的主要结构尺寸设计――――――13
七. 轴的设计――――――――――――――――――14
八. 滚动轴承的选择和计算――――――――――――19
九. 键联接的选择和强度校核―――――――――――22
十. 联轴器的选择和计算―――――――――――――22
十一. 减速器的润滑―――――――――――――――22
十二. 参考文献―――――――――――――――――2计算过程及计算说明
一、传动方案拟定二、原始数据:
带拉力:F=5700N, 带速度:v=2.28m/s, 滚筒直径:D=455mm
运输带的效率: 工作时载荷有轻微冲击;室内工作,水份和灰份为正常状态,产品生产批量为成批生产,允许总速比误差 4%,要求齿轮使用寿命为10年,二班工作制;轴承使用寿命不小于15000小时。

三、电动机选择
(1) 选择电动机类型: 选用Y系列三相异步电动机
(2) 选择电动机功率::
运输机主轴上所需要的功率:
传动装置的总效率:
, , , , 分别是:V带传动,齿轮传动(闭式,精度等级为8),圆锥滚子轴承(滚子轴承一对),联轴器(刚性联轴器),运输带的效率。查《课程设计》表2-3,
取:
所以:
电动机所需功率: ,
查《课程设计》表16-1 取电动机Y200L1-6的额定功率
(3)选择电动机的转速
取V带传动比范围(表2-2) ≤2~4;单级齿轮减速器传动比 =3~6
滚筒的转速:
电动机的合理同步转速:
查表16-1得电动机得型号和主要数据如下(同步转速符合)
电动机型号 额定功率(kW) 同步转速(r/min) 满载转速nm
(r/min) 堵载转矩
额定转矩 最大转矩
额定转矩
Y200L1-6 18.5 1000 970 1.8 2.0
查表16-2得电动机得安装及有关尺寸
中心高
H 外形尺寸
底脚安装尺寸
地脚螺栓孔直径
轴伸尺寸
键公称尺寸
200 775×(0.5×400+310) ×310 318×305 19 55×110 16×
五、计算总传动比及分配各级的传动比
传动装置得总传动比 :
取V带传动比: ;单级圆柱齿轮减速器传动比:
(1) 计算各轴得输入功率
电动机轴:
轴Ⅰ(减速器高速轴):
轴Ⅱ(减速器低速轴):
(2) 计算各轴得转速
电动机轴:
轴Ⅰ :
轴Ⅱ :
(3)计算各轴得转矩
电动机轴
轴Ⅰ :
轴Ⅱ :
上述数据制表如下:
参数
轴名 输入功率
( )
转速
( )
输入转矩
( )
传动比
效率
电动机轴 15.136 970 182.14 1.6893 0.95
轴Ⅰ(减速器高速轴) 14.379 574.20 239.15 6 0.97
轴Ⅱ(减速器低速轴) 13.669 95.70 1364.07
五、传动零件的设计计算
1. 普通V带传动得设计计算
① 确定计算功率
则: ,式中,工作情况系数取 =1.3
② 根据计算功率 与小带轮的转速 ,查《机械设计基础》图10-10,选择SPA型窄V带。
③ 确定带轮的基准直径
取小带轮直径: ,
大带轮直径 :
根据国标:GB/T 13575.1-1992 取大带轮的直径
④ 验证带速:
在 之间。故带的速度合适。
⑤确定V带的基准直径和传动中心距
初选传动中心距范围为: ,初定
V带的基准长度:

查《机械设计》表2.3,选取带的基准直径长度
实际中心距:
⑥ 验算主动轮的最小包角
故主动轮上的包角合适。
⑦ 计算V带的根数z
,由 , ,
查《机械设计》表2.5a,得 ,由 ,查表2.5c,得额定功率的增量: ,查表2.8,得 ,查表2.9,得
, 取 根。
⑧ 计算V带的合适初拉力
查《机械设计》表2.2,取

⑨ 计算作用在轴上的载荷 :

⑩ 带轮的结构设计 (单位)mm
带轮
尺寸
小带轮
槽型 C
基准宽度
11
基准线上槽深
2.75
基准线下槽深
11.0
槽间距
15.0 0.3

槽边距
9
轮缘厚
10
外径
内径
40
带轮宽度
带轮结构 腹板式
V带轮采用铸铁HT150或HT200制造,其允许的最大圆周速度为25m/s.
2. 齿轮传动设计计算
(1)择齿轮类型,材料,精度,及参数
① 选用斜齿圆柱齿轮传动(外啮合);
② 选择齿轮材料:由课本附表1.1选大、小齿轮的材料均为45钢,并经调质后表面淬火,齿面硬度为HRC1=HRC2=45;
③ 选取齿轮为7级的精度(GB 10095-88);
④ 初选螺旋角
⑤ 选 小齿轮的齿数 ;大齿轮的齿数
(2)按齿面接触疲劳强度设计
由设计计算公式进行试算,即
A. 确定公式内各个计算数值
① 试选载荷系数Kt=1.5
② 小齿轮传递的转矩:
③ 由《机械设计》表12.5得齿宽系数 (对硬齿面齿轮, 取值偏下极限)
④ 由《机械设计》表12.4弹性影响系数
⑤ 节点区域系数
所以,得到 =2.4758
⑥ 端面重合度



代入上式可得:
⑦ 接触疲劳强度极限σHlim1=σHlim2=1000Mpa (图12.6)
⑧ 应力循环次数
N1=60 nⅠjLh=60x574.20x1x(2x8x300x10)=16.5x108
N2= N1/i2=16.5x108/6=2.75x108
⑨ 接触疲劳寿命系数 根据图12.4
⑩ 接触疲劳许用应力 取
=0.91 1000/1.2Mpa=758.33 MPa
=0.96 1000/1.2Mpa=800 Mpa
因为 =779.165MPa
B. 计算
① 试算小齿轮分度圆

② 计算圆周速度: =
③ 计算齿宽: = 1 57.24 = 57.24 mm
④ 齿宽与齿高之比:
/(2.25 )
⑤ 计算载荷系数K
根据v=2.28m/s,7级精度,由附图12.1查得动载系数 =1.07
由附表12.2查得 ; 由附表12.1查得 .25
参考课本附表12.3中6级精度公式,估计 1.313取 =1.313
由附图12.2查得径向载荷分布系数 =1.26
载荷系数
⑥ 按实际的载荷系数修正分度圆直径

⑦ 计算模数

3、按齿根弯曲疲劳强度设计

A. 确定公式中的各参数
① 载荷系数K:

② 齿形系数 和应力校正系数
当量齿数 = =21.6252,
= =112.2453

③ 螺旋角影响系数
轴面重合度 = =0.9385
取 =1得 =0.9374
④ 许用弯曲应力

查课本附图6.5得 ,取 =1.4,则
=0.86 500/1.4Mpa=307 Mpa
=0.88 500/1.4Mpa=314 Mpa
⑤ 确定
=2.73 1.57/307=0.01396
=2.17 1.80/314=0.01244
以 代入公式计算
B. 计算模数mn

比较两种强度计算结果,确定

4、几何尺寸的计算
① 中心距 =3 (21+126)/ (2cos80)=223mm
取中心距
② 修正螺旋角:

③ 分度圆直径:

④ 齿宽 ,取B2=65 mm,B1=70 mm
⑤ 齿轮传动的几何尺寸,制表如下:(详细见零件图)
名称 代号 计算公式 结果
小齿轮 大齿轮
中心距

223 mm
传动比

6
法面模数
设计和校核得出 3
端面模数

3.034
法面压力角
螺旋角
一般为
齿顶高
3mm
齿根高
3.75mm
全齿高
6.75mm
顶隙 c
0.75mm
齿数 Z
21 126
分度圆直径
64.188mm 382.262 mm
齿顶圆直径
70.188 mm 388.262mm
齿根圆直径
57.188 mm 375.262 mm
齿轮宽 b
70mm 65mm
螺旋角方向
左旋 右旋
六、减速器铸造箱体的主要结构尺寸设计
查《设计基础》表3-1经验公式,及结果列于下表。
名称 代号 尺寸计算 结果(mm)
底座壁厚
8
箱盖壁厚

8
底座上部凸圆厚度

12
箱盖凸圆厚度

12
底座下部凸圆厚度

20
底座加强筋厚度 e
8
底盖加强筋厚度

7
地脚螺栓直径 d 或表3.4
16
地脚螺栓数目 n 表3--4 6
轴承座联接螺栓直径
0.75d 12
箱座与箱盖联接螺栓直径
(0.5—0.6)d 8
轴承盖固定螺钉直径
(0.4—0.5)d 8
视孔盖固定螺钉直径
(0.3—0.4)d 5
轴承盖螺钉分布圆直径

155/140
轴承座凸缘端面直径

185/170
螺栓孔凸缘的配置尺寸
表3--2 22,18,30
地脚螺栓孔凸缘配置尺寸
表3--3 25,23,45
箱体内壁与齿轮距离

12
箱体内壁与齿轮端面距离

10
底座深度 H
244
外箱壁至轴承端面距离

45

七、轴的设计计算
1. 高速轴的设计
① 选择轴的材料:选取45号钢,调质,HBS=230
② 初步估算轴的最小直径
根据教材公式,取 =110,则: =32.182mm

因为与V带联接处有一键槽,所以直径应增大5%
③ 轴的结构设计:
考虑带轮的机构要求和轴的刚度,取装带轮处轴径 ,根据密封件的尺寸,选取装轴承处的轴径为:
两轴承支点间的距离: ,
式中: ―――――小齿轮齿宽,
―――――― 箱体内壁与小齿轮端面的间隙,
――――――― 箱体内壁与轴承端面的距离,
――――― 轴承宽度,选取30310圆锥滚子轴承,查表13-1,得到
得到:
带轮对称线到轴承支点的距离
式中: ------------轴承盖高度,
t ――――轴承盖的凸缘厚度, ,故,
―――――螺栓头端面至带轮端面的距离,
―――――轴承盖M8螺栓头的高度,查表可得 mm
――――带轮宽度,
得到:
2.按弯扭合成应力校核轴的强度。
①计算作用在轴上的力
小齿轮受力分析
圆周力:
径向力:
轴向力:
②计算支反力
水平面:
垂直面:

所以:

③ 作弯矩图
水平面弯矩:
垂直面弯矩:

合成弯矩:

④ 作转矩图 (见P22页) T1=239.15Nm
当扭转剪力为脉动循环应变力时,取系数 ,
则:
⑤ 按弯扭合成应力校核轴的强度
轴的材料是45号钢,调质处理,其拉伸强度极限 ,对称循环变应力时的许用应力 。
由弯矩图可以知道,A剖面的计算弯矩最大 ,该处的计算应力为:

D 剖面的轴径最小,该处的计算应力为:
(安全)
⑥ 轴的结构图见零件图所示

2.低速轴的设计

(1).选择轴的材料:选择45号钢,调质,HBS=230
(2). 初步估算轴的最小直径:取A=110,
两个键,所以 mm
考虑联轴器的机构要求和轴的刚度,取装联轴器处轴径 ,根据密封件的尺寸,选取装轴承处的轴径为: 选30214 轴承 T=26.25

(3).轴的结构设计,初定轴径及轴向尺寸:考虑

---螺栓头端面至带轮端面的距离,
k ----轴承盖M12螺栓头的高度,查表可得k=7.5mm ,选用6个
L---轴联轴器长度,L=125mm
得到:

(4).按弯曲合成应力校核轴的强度

①计算作用的轴上的力
齿轮受力分析:圆周力: N
径向力:
轴向力:
③ 计算支反力:
水平面:
垂直面: ,



③ 作弯矩图
水平面弯矩:
垂直面弯矩:

合成弯矩:

④ 作转矩图 T2=1364.07Nm
当扭转剪力为脉动循环应变力时,取系数 , 则:

⑤ 按弯扭合成应力校核轴的强度
轴的材料是45号钢,调质处理,其拉伸强度极限 ,对称循环变应力时的许用应力 。
由弯矩图可以知道,C剖面的计算弯矩最大 ,该处的计算应力为:

D 剖面的轴径最小,该处的计算应力为:
(安全)
(5)轴的结构图见零件图所示:

八、滚动轴承的选择和计算
1.高速轴滚动轴承的选择和寿命计算

① 选取的轴承:型号为30310圆锥滚子轴承(每根轴上安装一对)
②轴承A的径向载荷
轴承B的径向载荷:

对于30310型圆锥滚子轴承,其内部派生轴向力

所以轴承A被“放松”,而轴承B被“压紧”,则

计算当量动载荷

对于轴承1
对于轴承2 (根据《机械设计》表9.1)
轴向载荷:

因为 ,按照轴承 A验算寿命

(由表13-1可查C=122kN)
故满足寿命要求

2. 低速轴滚动轴承的选择和寿命计算

①选取的轴承:型号为30214圆锥滚子轴承

机械设计课程设计:一级圆柱齿轮减速器

这学期末我也要做机械设计课程设计,内容也是齿轮减速器!! 呵呵……到时分享下

以上就是小编对于问题和相关问题的解答了,希望对你有用


上一篇:国产真实拍摄熟女视频室内设计黄野 下一篇:欧美大码肥臀视频在线室内设计材料及其功能介绍【室内设计功能分区介绍】

发表评论